.

ad test

Sunday, October 19, 2014

I'll Believe It When I See It

Commercial fusion has been just 15 years away for the past 50 years, so I am necessarily skeptical of Lockheed Martin's claims of a fusion break through: (Paid subscription required)

Hidden away in the secret depths of the Skunk Works, a Lockheed Martin research team has been working quietly on a nuclear energy concept they believe has the potential to meet, if not eventually decrease, the world’s insatiable demand for power.

Dubbed the compact fusion reactor (CFR), the device is conceptually safer, cleaner and more powerful than much larger, current nuclear systems that rely on fission, the process of splitting atoms to release energy. Crucially, by being “compact,” Lockheed believes its scalable concept will also be small and practical enough for applications ranging from interplanetary spacecraft and commercial ships to city power stations. It may even revive the concept of large, nuclear-powered aircraft that virtually never require refueling—ideas of which were largely abandoned more than 50 years ago because of the dangers and complexities involved with nuclear fission reactors.

………

Until now, the majority of fusion reactor systems have used a plasma control device called a tokamak, invented in the 1950s by physicists in the Soviet Union. The tokamak uses a magnetic field to hold the plasma in the shape of a torus, or ring, and maintains the reaction by inducing a current inside the plasma itself with a second set of electromagnets. The challenge with this approach is that the resulting energy generated is almost the same as the amount required to maintain the self-sustaining fusion reaction.

An advanced fusion reactor version, the International Thermonuclear Experimental Reactor (ITER), being built in Cadarache, France, is expected to generate 500 MW. However, plasma is not due to be generated until the late 2020s, and derivatives are not likely to be producing significant power until at least the 2040s.

The problem with tokamaks is that “they can only hold so much plasma, and we call that the beta limit,” McGuire says. Measured as the ratio of plasma pressure to the magnetic pressure, the beta limit of the average tokamak is low, or about “5% or so of the confining pressure,” he says. Comparing the torus to a bicycle tire, McGuire adds, “if they put too much in, eventually their confining tire will fail and burst—so to operate safely, they don’t go too close to that.” Aside from this inefficiency, the physics of the tokamak dictate huge dimensions and massive cost. The ITER, for example, will cost an estimated $50 billion and when complete will measure around 100 ft. high and weigh 23,000 tons.

The CFR will avoid these issues by tackling plasma confinement in a radically different way. Instead of constraining the plasma within tubular rings, a series of superconducting coils will generate a new magnetic-field geometry in which the plasma is held within the broader confines of the entire reaction chamber. Superconducting magnets within the coils will generate a magnetic field around the outer border of the chamber. “So for us, instead of a bike tire expanding into air, we have something more like a tube that expands into an ever-stronger wall,” McGuire says. The system is therefore regulated by a self-tuning feedback mechanism, whereby the farther out the plasma goes, the stronger the magnetic field pushes back to contain it. The CFR is expected to have a beta limit ratio of one. “We should be able to go to 100% or beyond,” he adds.

This crucial difference means that for the same size, the CFR generates more power than a tokamak by a factor of 10. This in turn means, for the same power output, the CFR can be 10 times smaller. The change in scale is a game-changer in terms of producibility and cost, explains McGuire. “It’s one of the reasons we think it is feasible for development and future economics,” he says. “Ten times smaller is the key. But on the physics side, it still has to work, and one of the reasons we think our physics will work is that we’ve been able to make an inherently stable configuration.” One of the main reasons for this stability is the positioning of the superconductor coils and shape of the magnetic field lines. “In our case, it is always in balance. So if you have less pressure, the plasma will be smaller and will always sit in this magnetic well,” he notes.
These are nice claims, but the only measurable claim that I can see is they might be a smaller and more compact installation. They may actually be onto something, or they may not. What I do know is that there have been claims that a fusion breakthrough is just around the corner for a very time, and their caveats lead me to believe that much of they are implying a level of maturity:
With just such a “Holy Grail” breakthrough seemingly within its grasp, and to help achieve a potentially paradigm-shifting development in global energy, Lockheed has made public its project with the aim of attracting partners, resources and additional researchers.
When a fusion prototype exceeds break even to the degree that it can function as a power station, I'll find it worth my while to look at the relative virtues of different configurations.

Until that point, I will assume that fusion claims of this nature are humbug.

No comments: